Control of cell differentiation in the central nervous system. |
During embryonal development of vertebrates, signaling molecules inform
each cell at which position it is located. In this way, the cell can
develop its special structure and function. For the first time now,
researchers of Karlsruhe Institute of Technology (KIT) have shown that
these signaling molecules are transmitted in bundles via long
filamentary cell projections. Studies of zebrafish of the scientists of
the European Zebrafish Resource Center (EZRC) of KIT revealed how the
transport of the signaling molecules influences signaling properties. A
publication in the Nature Communications journal presents the results.
Organisms, organs, and tissues are complex three-dimensional systems
that consist of thousands of cells of various types. During embryonal
development of vertebrates, each cell requires information on the
position at which it is located in the tissue. This position information
enables the cell to develop a certain cell type for later execution of
the correct function. This information is transmitted via signal
molecules, so-called morphogenes. These morphogenes are not homogenously
distributed in the tissue, their concentration varies. Various
concentrations activate various genes in the target cell.
The cells in the developing central nervous system receive their position information from signal molecules belonging to the family of Wnt proteins. The concentration of Wnt proteins determines whether a cell differentiates to a cell of the forebrain or of the afterbrain. "Distribution of these signal molecules has to be controlled precisely," Dr. Steffen Scholpp, head of a research group of the KIT Institute of Toxicology and Genetics (ITG), explains. "Smallest changes of the concentration or the transport direction may cause severe damage, such as massive malformations during embryonal development or formation of cancer."
For the first time now, the working group of Dr. Steffen Scholpp has shown that the Wnt proteins are transmitted specifically via long cell projections, so-called filopodia. In the Nature Communications journal, the scientists report that the signaling factors are loaded on the tips of the filopodia only. In this way, signaling can start immediately upon contacting. The signaling factors bind to the corresponding receptors of the target cell and induce the correct cell response. "Now, the source cell can decide precisely which target cell receives how much signaling protein at which time," Scholpp explains. The KIT researchers study zebrafish and human cell lines and succeeded in reproducing or reducing the filopodia and analyzing the resulting changes of signaling properties of the Wnt morphogenes.
The cells in the developing central nervous system receive their position information from signal molecules belonging to the family of Wnt proteins. The concentration of Wnt proteins determines whether a cell differentiates to a cell of the forebrain or of the afterbrain. "Distribution of these signal molecules has to be controlled precisely," Dr. Steffen Scholpp, head of a research group of the KIT Institute of Toxicology and Genetics (ITG), explains. "Smallest changes of the concentration or the transport direction may cause severe damage, such as massive malformations during embryonal development or formation of cancer."
For the first time now, the working group of Dr. Steffen Scholpp has shown that the Wnt proteins are transmitted specifically via long cell projections, so-called filopodia. In the Nature Communications journal, the scientists report that the signaling factors are loaded on the tips of the filopodia only. In this way, signaling can start immediately upon contacting. The signaling factors bind to the corresponding receptors of the target cell and induce the correct cell response. "Now, the source cell can decide precisely which target cell receives how much signaling protein at which time," Scholpp explains. The KIT researchers study zebrafish and human cell lines and succeeded in reproducing or reducing the filopodia and analyzing the resulting changes of signaling properties of the Wnt morphogenes.
No comments:
Post a Comment